INOX

2/2-way Angle-Seat Valve 32mm Actuator for media up to $+180^{\circ} \mathrm{C}$ DN10, 15

- Small, compact design
- Actuator and valve body in stainless steel
- Normally closed or open actuators
- Available with flow direction below seat
- Actuator concept for block mounting

SY01MD
Multifunctional block

The externally piloted angle-seat valve is operated with a single acting piston actuator

The pneumatic piston actuator is constructed from stainless steel and incorporates a proven self adjusting packing gland, to ensure high media leak tightness. The 2/2-way body is made from a high quality stainless steel casting, with a flow optimized design enabling high flow rates.
For customized solutions in particular, a modular housing is available in a compact design, with mixing functions, distribution functions and multi-way functions.

Note: For 2000 INOX the combination of max. medium temperature and max. ambient temperature is as shown in the following chart

FLUID CONTROL SYSTEMS

Type 8640
AirLINE Quick

Technical data	
Orifice	DN 10, 15
Body materials	Cast Stainless steel
Seal material	PTFE
Actuator material	Stainless steel 316L
Medium	Water, alcohol, oils, fuels, hydraulic fluids, salt solution, alkali solutions, organic solvents, steam, air and neutral gases
Viscosity	Max. $600 \mathrm{~mm}^{2} / \mathrm{s}$
Packing gland (with silicone grease)	PTFE V-rings with spring compensation
Medium temperature ${ }^{1}$	0 up to $+180^{\circ} \mathrm{C}$
Ambient temperature ${ }^{1}$	0 up to $+60^{\circ} \mathrm{C}$
Control medium	Neutral gases, air
Min. / max. pilot pressure ${ }^{2}$	5.5-10 bar
Medium pressure	from vacuum to 16 bar
Kv value water	$2.4 \mathrm{~m}^{3} / \mathrm{h}$ (DN10) and $4.0 \mathrm{~m}^{3} / \mathrm{h}$ (DN 15)
Port connection	G and NPT $3 / 8$ and $1 / 2$ - threaded ports G 1/2 - external thread Weld end acc. EN ISO 1127/ISO 4200, DIN 11850 Series 2, ASME BPE
Pilot air port	M5 (Screw-in fitting recommended)
Control function	SF-A (normally closed by spring action) SF-B (normally opened by spring action) on request

[^0]
Technical data

Orifice [mm]	Actuator size [mm]	Kv-value water ($\mathrm{m}^{3} / \mathrm{h}$)	Minimum pilot pressure ${ }^{1)}$ CFA [bar]	Max. operating pressure to $+180^{\circ}$		Weight [kg]
				CFA [bar]	CFB [bar]	
10	32	2.4	5.5	16	16	0.4
15	32	4.0	5.5	11	-	0.6

${ }^{1)}$) lower pilot pressure on reduced medium temperature on request

Materials Type 2000 INOX

	be ordered seperately Stainless steel 1.4404 FPM Stainless steel 1.4404 1.4310 PTFE PTFE Graphite Stainless steel 1.4404 Stainless steel 1.4404 PTFE Stainless steel 1.4404 316L

Pressure chart with control function B and flow direction below seat

Ordering chart (other versions on request)
Flow direction below seat

بَّ		E E © U 능					$\begin{aligned} & \text { O} \\ & \text { E } \\ & \text { E } \end{aligned}$
A 2/2-way valve normally closed by spring action	G 3/8	10	32	2.4	5.5	16	210644
	NPT 3/8	10	32	2.4	5.5	16	218145
	Rc 3/8	10	32	2.4	4.0	10	226632
	external thread G 1/2	10	32	2.4	5.5	16	218148
	EN ISO 1127 DN10 (17.2 $\times 1.6$)	10	32	2.4	5.5	16	215485
	DIN 11850R2 DN10 (13×1.5)	10	32	2.4	5.5	16	218146
	ASME BPE 1/2 (12.7 x 1.65)	10	32	2.4	5.5	16	218147
	actuator without body	10	32	2.4	5.5	16	212149
	G 1/2	15	32	4.0	5.5	11	246066
	NPT 1/2	15	32	4.0	5.5	11	246067
	Rc $1 / 2$	15	32	4.0	5.5	11	246068
	EN ISO 1127 DN10 (21.3 $\times 1.6$)	15	32	4.0	5.5	11	246069
	DIN 11850R2 DN10 (19 x 1.5)	15	32	4.0	5.5	11	246070
	ASME BPE 1/2 (12.5 x 1.65)	15	32	4.0	5.5	11	246071
	actuator without body	15	32	4.0	5.5	11	245389

Further versions on request
Analyse
Oxygen version
Assembly silicon, oil and fat-free
11
Control function
Control function B opened by spring action

Ordering chart for accessories (not supplied as standard)
Angle screw-in fitting 45° has to be ordered seperately.

$\begin{aligned} & \text { 들 } \\ & \text { 른 } \\ & \text { む } \\ & \hline \end{aligned}$	O E E ¢
Screw-in fitting ${ }^{1)} \mathrm{M} 5-\varnothing$ 4mm	903383
Screw-in fitting ${ }^{1)} \mathrm{M} 5-\varnothing 6 \mathrm{~mm}$	771077

${ }^{1)}$ Version up to max. $60^{\circ} \mathrm{C}$ Ambient temperature
higher temperatures - on request

Multifunctional block SY01MD (only DN 10 available)

Modern valve solutions must consider; in addition to the normal process requirements e.g. temperature and pressure; influences such as the space available, and should be flexible and adaptable to meet the customer specific needs.
The modular block system is especially suited to this purpose, as it can be used to accommodate the most complex fluidic systems, whilst optimizing the smallest possible installed space.
The Multifunction Block Solution improves the inherent performance weaknesses associated with traditional interconnecting pipe assemblies. The Multifunction Block Solution distills existing interconnecting pipe solutions, removing unnecessary pipework, elbows and connections, whilst maintaining flexibility of internal gallery configurations. The aim is to improve the system performance overall where possible, by eliminating potential leak paths, reducing material mass, lowering component count and minimizing the overall space envelop. Added to this, the inherent flexibility of the design allows for the inclusion of fluid ancillaries such as strainers and checkvalves, for a complete fluid management system.

System example

The Illustrations above show a 3-way distribution-system with flow rate and temperature measurement via the Bürkert flow sensor,
Type 8011 and temperature sensor, Type TSTO01. The input is via an additional feed-in module with an integrated filter.

The following basic functions are available using different block combinations.

-Distribution system: Depending on the input. it could be shared by different users.
-Collection system: Depending on the different uses, the return flow could be collected
-Mixing system: Different mediums (e.g. hot water and cold water or a mix of different chemicals) could be mixed together and distributed to different users.
-Sensor integration: Sensors can be easily integrated in the supply or return flow to measure pressure or temperature.
-Integration of filters and check valves.

Dimensions [mm]

To find your nearest Bürkert facility, click on the orange box \rightarrow

www.burkert.com

In case of special application conditions,
please consult for advice.

[^0]: ${ }^{2)}$ lower pilot pressure on reduced medium temperature on request

