PART I

Comparative Evaluation of the 3M[™] Petrifilm[™] Rapid Aerobic Count Plate for the Enumeration of Total Viable Count in a Variety of Foods

AOAC[®] Performance Tested Method[™] Method Developer Study October 13, 2014 Updated October 21, 2014

M. Joseph Benzinger, Jr., Allison Mastalerz, Patrick Bird, Erin Crowley, James Agin, David Goins Q Laboratories, Inc. 1400 Harrison Avenue Cincinnati, OH 45214

A comparative evaluation of the 3M[™] Petrifilm[™] Rapid Aerobic Count (RAC) Plate (St. Paul, MN) was conducted at Q Laboratories, Inc. (Cincinnati, OH). The 3M Petrifilm RAC Plate was compared to the FDA/BAM Chapter 3 for the enumeration of total viable count in raw ground beef, raw ground pork, raw ground turkey, chicken carcass rinsate, fresh swai, fresh tuna, fresh tiger shrimp, easy-peel shrimp, cherry tomato wash, frozen blueberries, Mediterranean apricots, creamy salad dressing and fresh pasta. In addition, the 3M Petrifilm RAC Plate was compared to the Standard Methods for the Examination of Dairy Products Chapter 6 for the enumeration of total aerobic count in vanilla ice cream, dry milk powder and pasteurized skim milk. Three different levels of microbial contamination (low, medium, high) were enumerated for each matrix, except pasteurized skim milk, which was artificially contaminated and included an uninoculated level. A total of five replicates per level were analyzed. The difference of means for each level for each matrix was determined. The 3M Petrifilm RAC Plate demonstrated reliability as a rapid and accurate alternative to the reference methods for aerobic plate enumeration in the food products evaluated.

This report presents the analytical results for the comparison of the 3M Petrifilm Rapid Aerobic Count (RAC) Plate method to the FDA/BAM Chapter 3 Aerobic Plate Count and to the Standard Methods for the Examination of Dairy Products Chapter 6 Microbiological Count Methods, Standard Plate Count reference methods. [1, 2] All analyses were conducted at Q Laboratories, Inc. (Cincinnati, OH). All 3M Petrifilm RAC plates were provided by 3M Food Safety (St. Paul, MN). The study was administered by the AOAC Research Institute.

Materials and Methods

Testing was conducted following the procedures outlined in the protocol provided by the AOAC Research Institute: *Comparative Evaluation of the* 3MTM PetrifilmTM Rapid Aerobic Count (RAC) Plate *for the Enumeration of Total Viable Count in a Variety of Foods, June 2014 (Version 1).* [3] The evaluation was conducted using paired samples with a variety of food matrices. Raw ground beef, raw ground pork, raw ground turkey, chicken carcass rinsate, fresh swai, fresh tuna, fresh tiger shrimp, easy-peel shrimp, cherry tomato wash, frozen blueberries, Mediterranean apricots, creamy salad dressing and fresh pasta were compared to the FDA BAM Chapter 3 Aerobic Plate Count reference method. Vanilla ice cream, dry milk powder and pasteurized skim milk were compared to the Standard Methods for the Examination of Dairy Products Chapter 6 *Microbiological Count Method, Standard Plate Count* reference method. For each food matrix, three different brands, or product lots, were obtained from local grocers to quantify three different levels of microbial contamination. All food matrices had various levels of microbial contamination, with the exception of pasteurized skim milk. For this matrix, artificial contamination was required. The target contamination levels for each matrix, whether natural or artificial, were as follows: a low level (\approx 10–100 CFU/g), a medium level (\approx 100–1,000 CFU/g) and a high level (\approx 1,000–10,000 CFU/g) with five replicates analyzed at each level. An uninoculated control level was also included for the pasteurized skim milk. Table A presents the matrix summary information.

Prior to inoculation of the pasteurized skim milk, a single colony of *Enterobacter aerogenes* ATCC 13048 from Tryptic Soy Agar with 5% Sheep Blood (SBA)was transferred to Brain Heart Infusion (BHI) broth at $32 \pm 1^{\circ}$ C for 18–24 hours. After incubation, the culture was heat stressed for 10 ± 1 minutes at $50 \pm 1^{\circ}$ C in a water bath. The heat stressed culture was plated onto a selective agar, Violet Red Bile (VRB) agar and a non-selective agar, Tryptic Soy Agar (TSA), to determine percent reduction. The plates were incubated at $32 \pm 1^{\circ}$ C for 24 ± 2 hours and the colonies were counted. The degree of injury was estimated as:

$$\left(1 - \frac{n_{select}}{n_{nonselect}}\right) \times 100$$

Where n_{select} = number of colonies on selective agar and $n_{nonselect}$ = number of colonies culture on non-selective agar after the heat stress protocol. Using BHI broth as the diluent, the culture was diluted to achieve the three target contamination levels.

Matrix	Target Contamination Level	Replicates	Test Portion Size	Reference Method	3M [™] Petrifilm™ Rapid Aerobic Count Plate Method
	10-100 CFU/g	5		FDA/BAM ¹	
Raw Ground Beef	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10–100 CFU/g	5		FDA/BAM ¹	
Raw Ground Pork	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10–100 CFU/g	5		FDA/BAM ¹	
Raw Ground Turkey	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/g	5	1	@ 35 ± 1°C	- 30 - 10
	10-100 CFU/mL	5		FDA/BAM ¹	
Chicken Carcass Rinsate	100-1,000 CFU/mL	5	50mL	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
Innouto	1,000–10,000 CFU/mL	5		@ 35 ± 1°C	00110

Table A: Study Summary

¹ FDA/BAM Chapter 3

² Standard Methods for the Examination of Dairy Products Chapter 6

Matrix	Target Contamination Level	Replicates	Test Portion Size	Reference Method	3M™ Petrifilm™ Rapid Aerobic Count Plate Method
Chicken Carcass	100–1,000 CFU/g	5		FDA/BAM ¹	24 ± 2 hours
Rinsate	1,000–10,000 CFU/g	5	– 50g	48 ± 2 hours @ 35 ± 1°C	@ 35 ± 1°C
	10–100 CFU/g	5		FDA/BAM ¹	
Fresh Swai	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 32 ± 1°C
	1,000-10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Fresh Tuna	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 32 ± 1°C
	1,000-10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Fresh Tiger Shrimp	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 32 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Easy-Peel Shrimp	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 32 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/mL	5		FDA/BAM ¹	
Cherry Tomato Wash	100–1,000 CFU/mL	5	50mL	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/mL	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Frozen Blueberries	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Mediterranean Apricots	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000-10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Creamy Salad Dressing	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		FDA/BAM ¹	
Fresh Pasta	100-1,000 CFU/g	5	50g	48 ± 2 hours	24 ± 2 hours @ 35 ± 1°C
	1,000–10,000 CFU/g	5		@ 35 ± 1°C	
	10-100 CFU/g	5		SMEDP ²	
Vanilla Ice Cream	100-1,000 CFU/g	5	11g	48 ± 3 hours	24 ± 2 hours @ 32 ± 1°C
	1,000–10,000 CFU/g	5		@ 32 ± 1°C	
	10-100 CFU/g	5		SMEDP ²	
Dry Milk Powder	100-1,000 CFU/g	5	11g	72 ± 3 hours	48 ± 3 hours @ 32 ± 1°C
	1,000–10,000 CFU/g	5		@ 32 ± 1°C	
	0 CFU/mL	5			
Pasteurized Skim Milk	10-100 CFU/mL	5	- 11mL	SMEDP ² 48 \pm 3 hours	24 ± 2 hours
i asleunzeu skini wiik	100-1,000 CFU/mL	5		$@ 32 \pm 1^{\circ}C$	@ 32 ± 1°C
		_	1		1

Table A: Study Summary (continued)

¹ FDA/BAM Chapter 3 ² Standard Methods for the Examination of Dairy Products Chapter 6

1,000-10,000 CFU/mL

5

FDA/BAM Chapter 3

Five replicate test portions per level, consisting of $50 \pm 1g$ each, were diluted with $450 \pm 5mL$ of Butterfield's Phosphate Buffer (BPB) and homogenized by mechanically stomaching in filter stomacher bags for 2 minutes. From the diluted sample, 1.0mL was placed in duplicate into separate, sterile Petri dishes. Subsequent 10-fold serial dilutions were prepared by removing 10mL from the previous dilution and placing it into $90 \pm 1mL$ BPB dilution bottles, shaking 25 times within seven seconds in a 30cm (1 ft) arc to homogenize thoroughly. From each dilution, 1.0mL was removed and placed in duplicate into separate, sterile Petri dishes and covered with 12–15mL of tempered Plate Count Agar (PCA) within 15 minutes. All plates were mixed thoroughly and uniformly by alternate rotation and back and forth motions of the plates on a flat surface, taking care to avoid spillage on the Petri dish lid. After the agar solidified, all plates were inverted and incubated at $35 \pm 1^{\circ}$ C for 48 ± 2 hours. Plates having colonies within the countable range of 30–300 per plate were enumerated using a Darkfield manual colony counter.

Standard Methods for the Examination for Dairy Products (SMEDP) Chapter 6

Five replicate test portions per contamination level, consisting of 11 ± 1 mL each, were diluted into a dilution bottle containing 99 ± 1mL of Butterfield's Phosphate Buffer (BPB) and homogenized by shaking 25 times in a 30cm (1 ft) arc within seven seconds. From the diluted sample, 1.0mL was removed and placed in duplicate into separate, sterile Petri dishes then promptly covered with 12–15mL of tempered Standard Methods Agar (SMA). Subsequent 10-fold serial dilutions were prepared by removing 11mL from the previous dilution and placing it into a 99 ± 1mL BPB dilution bottle, shaking 25 times within seven seconds in a 30cm (1 ft) arc. From each dilution, 1.0mL was removed and placed in duplicate into separate sterile Petri dishes and covered with 12–15mL of tempered SMA within 15 minutes of the dilution originally performed. All plates were mixed thoroughly and uniformly by alternate rotation and back-and-forth motions on a flat surface, taking care to avoid spillage on the Petri dish lid. After the agar solidified, all plates for vanilla ice cream and pasteurized skim milk were inverted and incubated at 32 ± 1°C for 48 ± 3 hours. Plates for the dry milk powder were inverted and incubated at 32 ± 1°C for 72 ± 3 hours. Plates having colonies within the countable range of 25–250 per plate were enumerated using a Darkfield manual colony counter.

3M[™] Petrifilm[™] Rapid Aerobic Count (RAC) Plate Method

Using the diluted test portions for each of the reference methods, prepared as described above, 1.0mL of each dilution was placed onto a 3M Petrifilm RAC Plate by aseptically retracting the top film of the plate and placing the diluted sample into the center of the plate. The top film was gently lowered and the aliquot spread with the $3M^{TM}$ PetrifilmTM Flat Spreader. Firm and even pressure was applied to the spreader to evenly distribute the sample onto the plate. All plates except those for seafood and dairy products were incubated at $35 \pm 1^{\circ}$ C for 24 ± 2 hours. Seafood and dairy products, except dry milk powder, were incubated at $32 \pm 1^{\circ}$ C for 24 ± 2 hours. Dry milk powder was incubated at $32 \pm 1^{\circ}$ C for 48 ± 3 hours. Plates having colonies within the countable range of 30-300 were enumerated using a Darkfield manual colony counter.

Results

Statistical analysis of all matrices was conducted for each contamination level. Logarithmic transformations of the bacterial counts (CFU/g or CFU/mL) were performed. The transformed data was analyzed for outliers by the Cochran and Grubbs' tests. No evidence of physical cause or suspicion of cause was noted, so all outliers identified were included in the statistical analysis for each matrix. The difference of means with 95% confidence intervals and the reverse transformed mean difference with confidence intervals (CFU/g or CFU/mL) for each contamination level were determined. [4] A mean difference value less than the standard alpha value of 0.5 indicated no statistical difference between the 3M Petrifilm RAC Plate method and either reference method. The results of the heat stress for the culture used to artificially contaminate the pasteurized skim milk is

presented in Table 1 of the Appendix. Table 2 of the Appendix presents a summary of the logarithmically transformed data for each matrix. Tables 3–19 of the Appendix present the raw data, mean Log_{10} , repeatability (S_r), relative standard repeatability (RSD_r) values for each contamination level and difference of means values. Figures 1–17 present the square of the linear correlation coefficient (r^2).

Raw Ground Beef

For the low, medium and high levels, mean differences of -0.0572, -0.0456 and -0.0674 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low and high contamination levels, with S_r values of 0.1519 and 0.0783, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 3 and Figure 1 in the Appendix.

Raw Ground Pork

For the low, medium and high levels, mean differences of -0.2878, 0.2134 and -0.0012 were obtained, respectively. One data point was identified in the 3M Petrifilm RAC Plate method high contamination level as an outlier by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that it would be included in the statistical analysis. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low and medium contamination levels, with S_r values of 0.0852 and 0.0172, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 4 and Figure 2 in the Appendix.

Raw Ground Turkey

For the low, medium and high levels, mean differences of -0.2946, -0.7374 and -0.0170 were obtained, respectively. There was a significant difference between the two methods for the medium contamination level, with a mean difference of -0.7374. The 3M Petrifilm RAC Plate method produced a lower standard deviation value than the FDA/BAM method for the low contamination level, with a S_r value of 0.1721, indicating a more repeatable method when compared to the reference method. Detailed results are presented in Table 5 and Figure 3 in the Appendix.

Chicken Carcass Rinsate

For the low, medium and high levels, mean differences of -0.1380, -0.0202 and -0.0405 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced a lower standard deviation value than the FDA/BAM method for the medium contamination level, with a S_r value of 0.0474, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 6 and Figure 4 in the Appendix.

Fresh Swai

For the low, medium and high levels, mean differences of -0.0585, -0.2760 and 0.0080 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low and high contamination levels, with S_r values of 0.0237 and 0.0472, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 7 and Figure 5 in the Appendix.

Fresh Tuna

For the low, medium and high levels, mean differences of -0.6401, -0.4451 and 0.6271 were obtained, respectively. One data point was identified in the 3M Petrifilm RAC Plate method medium contamination level as an outlier by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that it would be included in the statistical analysis. There were significant differences between the two methods for the low and high contamination levels, with a mean difference of -0.6401 and 0.6271, respectively. The 3M Petrifilm RAC Plate method produced a lower standard deviation value than the FDA/BAM method for the low contamination level, with a S_r value of 0.3288, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 8 and Figure 6 in the Appendix.

Fresh Tiger Shrimp

For the low, medium and high levels, mean differences of 0.7970, 0.9457 and 1.0056 were obtained, respectively. One data point was identified in the FDA/BAM method medium contamination level as an outlier by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that it would be included in the statistical analysis. There were significant differences between the methods for all three contamination levels, with mean differences of 0.7970, 0.9457 and 1.0056 for the low, medium and high levels, respectively. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low, medium and high contamination levels, with S_r values of 0.3223, 0.0800 and 0.0959, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 9 and Figure 7 in the Appendix.

Easy-Peel Shrimp

For the low, medium and high levels, mean differences of 0.0415, 0.1536 and 0.0764 were obtained, respectively. One data point in the low level of the FDA/BAM method and another in the high contamination level of the FDA/BAM method were identified as outliers by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that they would be included in the statistical analysis. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. Detailed results are presented in Table 10 and Figure 8 in the Appendix.

Cherry Tomato Wash

For the low, medium and high levels, mean differences of -0.2273, 0.0113 and 0.0117 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. Detailed results are presented in Table 11 and Figure 9 in the Appendix.

Frozen Blueberries

For the low, medium and high levels, mean differences of 0.0951, -0.0233 and 0.0202 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low and medium contamination levels, with S_r values of 0.1297 and 0.0531, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 12 and Figure 10 in the Appendix.

Mediterranean Apricots

For the low, medium and high levels, mean differences of 0.0137, -0.0185 and 0.0204 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced a lower standard deviation value than the FDA/BAM method for the high contamination level, with a S_r value of 0.0298, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 13 and Figure 11 in the Appendix.

Creamy Salad Dressing

For the low, medium and high levels, mean differences of 0.3703, 0.0919 and 0.0152 were obtained, respectively. One data point was identified in the FDA/BAM method low contamination level as an outlier by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that it would be included in the statistical analysis. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low, medium and high contamination levels, with S_r values of 0.1297, 0.0397 and 0.0588, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 14 and Figure 12 in the Appendix.

Fresh Pasta

For the low, medium and high levels, mean differences of -0.0087, -0.0026 and 0.0242 were obtained, respectively. One data point was identified in the FDA/BAM method low contamination level as an outlier by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that it would be included in the statistical analysis. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and FDA/BAM using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the FDA/BAM method for the low, medium and high contamination levels, with S_r values of 0.0523, 0.0270 and 0.0460, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 15 and Figure 13 in the Appendix.

Vanilla Ice Cream

For the low, medium and high levels, mean differences of 0.4124, -0.0193 and -0.0313 were obtained, respectively. One data point was identified in the 3M Petrifilm RAC Plate method high contamination level as an outlier by the Single Grubbs' test. However, no evidence of physical cause or suspicion of cause was noted and it was determined that it would be included in the statistical analysis. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and SMEDP using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced a lower standard deviation value than SMEDP method for the low contamination level, with a S_r value of 0.0971, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 16 and Figure 14 in the Appendix.

Dry Milk Powder

For the low, medium and high levels, mean differences of 0.0866, 0.0401 and 0.0823 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and SMEDP using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than the SMEDP method for the low and high contamination levels, with S_r values of 0.0300 and 0.0683, respectively, indicating higher repeatability when compared to the reference method. Detailed results are presented in Table 17 and Figure 15 in the Appendix.

Pasteurized Skim Milk

For the low, medium and high artificially contaminated levels, mean differences of 0.0426, 0.0312 and 0.0440 were obtained, respectively. There were no statistically significant differences determined between the 3M Petrifilm RAC Plate method and SMEDP using the difference of means at all three contamination levels. The 3M Petrifilm RAC Plate method produced lower standard deviation values than SMEDP method for the medium and high inoculation levels, with S_r values of 0.0267 and 0.0275, indicating higher repeatability when compared to the reference method. All uninoculated replicates produced results of <10 CFU/mL. Detailed results are presented in Table 18 and Figure 16 in the Appendix.

The $3M^{TM}$ PetrifilmTM Rapid Aerobic Count (RAC) Plate is an efficient and easy to use plating method for detection and quantification of aerobic organisms in a variety of foods.

Under a top cover, the plate consists of a recessed sample area which contains a water-soluble gelling agent, nutrients and indicator dyes beneficial to the growth of microorganisms. Since the plated inoculum rehydrates the gel, there is no time or expense involving media preparation and pouring agar in Petri dishes. The compact size and thin design of the plates takes up less incubator and storage space than traditional Petri dishes, in addition to reducing biohazard waste.

The 3M Petrifilm RAC Plate is intended to reduce the total incubation time commonly associated with reference method aerobic plate count procedures. Of the seventeen matrices tested, only dry milk powder required 48 ± 3 hours of incubation using 3M Petrifilm RAC Plates, all other matrices were 24 ± 2 hours. For many end users, this can result in significant time savings and expedited release of results.

To assist in colony enumeration, the 3M Petrifilm RAC Plate employed two indicator dyes. One dye colored the colonies red, while the other colored the colonies blue. This biochemical and enzymatic detection system differentiates the organisms present from any food particulate matter, thereby increasing the accuracy of the plate count data generated. In addition, using a filtered stomacher bag when preparing samples reduced or eliminated the amount of particulate matter on the plate. Although the colonies were colored, a wide range of sizes, from pin-point to several millimeters across, were observed. The use of a magnified dark field colony counter aided in colony enumeration specifically as the analyst became more familiar with identifying variations in the size of the colonies.

Any diluted food product plated onto the 3M Petrifilm RAC Plate is required to have a pH greater than 5.0. Of the seventeen matrices evaluated only two, specifically frozen blueberries and Mediterranean apricots, required a pH adjustment using 1N NaOH.

When performing the statistical analysis for the tiger shrimp, a significant difference was clearly evident in the counts between 3M Petrifilm RAC Plate and FDA/BAM. The mean differences for the low, medium and high levels were 0.7970, 0.9457 and 1.0056, respectively. It is speculated that the lower incubation temperature $(32 \pm 1^{\circ}C)$ of the 3M Petrifilm RAC Plate compared to FDA/BAM (35 ± 1°C) may have been a contributing factor to the higher bacterial recovery by the candidate method.

Overall, the 3M Petrifilm RAC Plate method produced aerobic plate count data in a variety of food matrices that was comparable to the FDA/BAM or SMEDP procedures, but approximately 24 hours less than the standard methods. The 3M Petrifilm RAC Plate also had higher repeatability in 26 out of 51 contamination levels evaluated. The results of this evaluation indicate that the 3M Petrifilm Rapid Aerobic Count Plate method is a rapid and accurate alternative to the reference methods for enumeration of aerobic bacteria in the food products tested.

References

- (1) Food and Drug Administration Bacteriological Analytical Manual Chapter 3: *Aerobic Plate Count.* January, 2001. (Accessed August 2014) http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm063346.htm
- (2) Standard Methods for the Examination of Dairy Products Chapter 6: *Microbiological Count Method*, 17th Edition.
- (3) AOAC Research Institute Performance tested Methods Program. *Comparative evaluation of the 3M[™] Petrifilm[™] Rapid Aerobic Count (RAC) Plate for the Enumeration of Total Viable Count in a Variety of Foods*. June 2014. Version 1.
- Least Cost Formulations, Ltd., AOAC International Interlaboratory Study Workbook Paired Method Analysis for Micro Testing, Version 1.0 (2010) (Accessed August 2014)

Appendix

Table 1. Inoculum Heat Stress Results for Enterobacter aerogenes ATCC¹ 13048 in Pasteurized Skim Milk

Matrix	Inoculating Organism	Violet Red Bile Agar Count (CFU/mL)	Tryptic Soy Agar Count (CFU/mL)	Percent Injury
Pasteurized Skim Milk	Enterobacter aerogenes ATCC ¹ 13048	1.5 x 10 ⁸	4.5 x 10 ⁸	66.7

¹ American Type Culture Collection

able 2. Summary	of Mean Differences and Rev	erse Transformed N	lean Differences bet	veen 3M™ Petrifilm™ Rapid A	erobic Count Plate Method and	Reference Method
Matrix	Contamination Level	Reference Method	Mean Differenceª (Log ₁₀)	95% Confidence Intervals (LCL, UCL) (Log ₁₀)	Reverse Transformed Mean Difference (CFU/g or CFU/mL)	95% Confidence Intervals (LCL, UCL) (CFU/g or CFU/mL)
	Low		-0.0572	-0.3316, 0.2171	0.8766	0.4660, 1.6485
Raw Ground Beef	Medium	FDA/BAM	-0.0456	-0.2876, 0.1963	0.9003	0.5157, 1.5714
	High		-0.0674	-0.1695, 0.0347	0.8562	0.6769, 1.0832
	Low		-0.2878	-0.5067, -0.0690	0.5155	0.3114, 0.8531
Raw Ground Pork	Medium	FDA/BAM	0.2134	0.1246, 0.3022	1.6346	1.3323, 2.0054
	High		-0.0012	-0.0837, 0.0812	0.9972	0.8247, 1.2056
	Low		-0.2946	-0.8394, 0.2503	0.5075	0.1447, 1.7795
Raw Ground Turkey	Medium	FDA/BAM	-0.7374	-1.0588, 0.4161	0.1831	0.0873, 2.6068
	High		-0.0170	-0.0792, 0.0451	0.9616	0.8333, 1.1094
	Low		-0.1380	-0.2916, 0.0156	0.7278	0.5110, 1.0366
Chicken Carcass Rinsate	Medium	FDA/BAM	-0.0202	-0.0703, 0.0299	0.9546	0.8506, 1.0713
inisate	High		-0.0405	-0.0916, 0.0106	0.9110	0.8098, 1.0247
	Low		-0.1541	-0.2536, -0.0547	0.7013	0.5577, 0.8817
Raw Turkey Sausage	Medium	FDA/BAM	-0.3279	-0.4280, -0.2277	0.4700	0.3732, 0.5920
	High		-0.3802	-0.4599, -0.3005	0.4167	0.3468, 0.5006
	Low		-0.0585	-0.1434, 0.0264	0.8740	0.7188, 1.0627
resh Swai	Medium	FDA/BAM	-0.2760	-0.4981, -0.0539	0.5297	0.3176, 0.8833
	High		0.0800	-0.0794, 0.0953	1.2023	0.8329, 1.2454
	Low		-0.6401	-1.1007, -0.1795	0.2290	0.0793, 0.6615
resh Tuna	Medium	FDA/BAM	-0.4451	-1.2297, 0.3395	0.3588	0.0589, 2.1852
	High		0.6271	0.3274, 0.9268	4.2374	2.1252, 8.4489

^a A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods

Table 2. Summary of Mean Differences and Reverse Transformed Mean Differences between 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method and Reference Method (cont.)

Matrix	Contamination Level	Reference Method	Mean Differenceª (Log ₁₀)	95% Confidence Intervals (LCL, UCL) (Log ₁₀)	Reverse Transformed Mean Difference (CFU/g or CFU/mL)	95% Confidence Intervals (LCL, UCL) (CFU/g or CFU/mL)
	Low		0.7970	0.4484, 1.1456	6.2661	2.8080, 13.9830
Fresh Tiger Shrimp	Medium	FDA/BAM	0.9457	0.6387, 1.2527	8.8247	4.3521, 17.8937
-	High		1.0056	0.8848, 1.1263	10.1298	7.6701, 13.3752
	Low		0.0415	-0.0463, 0.1293	1.1003	0.8989, 1.3468
Easy-Peel Shrimp	Medium	FDA/BAM	0.1536	-0.4433, 0.7506	1.4243	0.3603, 5.6312
-	High	-	0.0764	0.0074, 0.1453	1.1923	1.0172, 1.3973
	Low		-0.2273	-0.3133, -0.1412	0.5925	0.4861, 0.7224
Cherry Tomato Wash	Medium	FDA/BAM	0.0113	-0.0758, 0.0984	1.0264	0.8398, 1.2543
-	High	-	0.0117	-0.0811, 0.1045	1.0273	0.8297, 1.2720
	Low		0.0951	-0.0756, 0.2657	1.2448	0.8402, 1.8437
Frozen Blueberries	Medium	FDA/BAM	-0.0233	-0.1910, 0.1445	0.9478	0.6442, 1.3948
-	High		0.0202	-0.0549, 0.0952	1.0476	0.8813, 1.2451
	Low		0.0137	-0.0490, 0.0764	1.0320	0.8933, 1.1923
Aediterranean Apricots	Medium	FDA/BAM	-0.0185	-0.1387, 0.1017	0.9583	0.7266, 1.2639
-	High	-	0.0204	-0.0029, 0.0438	1.0481	0.9933, 1.1061
	Low		0.3703	0.1627, 0.5780	2.3458	1.4545, 3.7844
Creamy Salad Dressing	Medium	FDA/BAM	0.0919	0.0048, 0.1789	1.2357	1.0111, 1.5097
-	High	-	0.0152	-0.0307, 0.0612	1.0356	0.9318, 1.1513
	Low		0.0087	-0.1299, 0.1472	1.0202	0.7415, 1.4035
Fresh Pasta	Medium	FDA/BAM	-0.0026	-0.0368, 0.0316	0.9940	0.9188, 1.0755
-	High		0.0242	-0.0730, 0.1215	1.0573	0.8453, 1.3228
	Low		0.4124	0.1288, 0.6960	2.5846	1.3452, 4.9659
/anilla ce Cream	Medium	SMEDP	-0.0193	-0.0988, 0.0602	0.9565	0.7965, 1.1487
-	High		-0.0313	-0.0699, 0.0073	0.9305	0.8513, 1.0170
	Low		0.0866	0.0132, 0.1601	1.2207	1.0309, 1.4458
Dry Milk Powder	Medium	SMEDP	0.0401	-0.0852, 0.1654	1.0967	0.8219, 1.4635
	High		0.0823	-0.0664, 0.2310	1.2086	0.8582, 1.7022
	Low		0.0426	-0.0330, 0.1181	1.1031	0.9268, 1.3125
Pasteurized Skim Milk	Medium	SMEDP	0.0312	-0.0557, 0.1181	1.0745	0.8796, 1.3125
-	High		0.0440	0.0068, 0.0812	1.1066	1.0158, 1.2056

^a A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods

Table 3. Method comparison results between the SW Femilini hapit Aerolic countriate Method and the FDA/DAM Reference Method for haw Ground Beer		IIIInal Mc an	II napiu Aero	מוכ הסמוור רומופ ו	אופוווסם מוום חופ		ובווכב ואבחוסם	טו המש שוטעווג	I DAGI			
	Sample	3M"	3M [™] Petrifilm [™] Rapid		Aerobic Count Plate Method	por			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S _r)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	-	1.0×10^{2}	2.0000				8.0 x 10 ¹	1.9031				
	2	1.8 x 10 ²	2.2553				4.5 x 10 ²	2.6532		_		
Low	3	2.0×10^{2}	2.3010	2.2453	0.1519	6.7652	1.7 x 10 ²	2.2304	2.3025	0.3119	13.5461	-0.0572
	4	2.6×10^{2}	2.4150				3.8 x 10 ²	2.5798		_		
	5	1.8×10^{2}	2.2553				1.4 x 10 ²	2.1461				
		9.5 x 10 ³	3.9777				8.1 x 10 ³	3.9085				
	2	7.8 x 10 ³	3.8921				6.0 x 10 ³	3.7782				
Medium	3	9.4 x 10 ³	3.9731	3.8474	0.1507	3.9169	9.1 x 10 ³	3.9590	3.8930	0.0931	2.3915	-0.0456
	4	4.2 x 10 ³	3.6232				1.0 x 10 ⁴	4.0000				
	5	5.9 x 10 ³	3.7709				6.6 x 10 ³	3.8195				
	-	7.6 x 10 ⁵	5.8808				7.8 x 10 ⁵	5.8921				
	2	1.1 x 10 ⁶	6.0414				1.0 x 10 ⁶	6.0000		_		
High	က	9.0 x 10 ⁵	5.9542	5.9829	0.0783	1.3087	1.3 x 10 ⁶	6.1139	6.0503	0.1176	1.9437	-0.0674
	4	1.2 x 10 ⁶	6.0792				1.6 x 10 ⁶	6.2041		_		
	5	9.1 x 10 ⁵	5.9590				1.1 x 10 ⁶	6.0414				

Table 3. Method Comparison Results Between the 3M¹² Petrifilm¹² Rapid Aerobic Count Plate Method and the FDA/BAM Reference Method for Raw Ground Beef

d Dork ć ć 4 60. Mathr EDA/RAM Rafe 4+ 2 -Mathor of Dioto Ś -140 0 1 10 3M™ Datrifilm™ Do 4 Dot ć . 2 Tahla A Matho

	Samula	3M [*]	3M TM Petrifilm TM Rapid		Aerobic Count Plate Method	thod			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S _r)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	-	1.3 x 10⁴	4.1139				2.0 x 10⁴	4.3010				
	2	1.0 x 10 ⁴	4.0000				1.1 x 10 ⁴	4.0414				
Low	3	8.8 x 10 ³	3.9445	4.0409	0.0852	2.1084	2.3 x 10 ⁴	4.3617	4.3287	0.1763	4.0728	-0.2878
	4	1.0 x 10 ⁴	4.0000				3.0 x 10⁴	4.4771				
	5	1.4 x 10 ⁴	4.1461				2.9 x 10⁴	4.4624				
	-	5.1 x 10 ⁵	5.7076				3.2 x 10 ⁵	5.5051				
	2	5.2 x 10 ⁵	5.7160				2.5 x 10 ⁵	5.3979				
Medium	ę	5.0 x 10 ⁵	5.6990	5.7124	0.0172	0.3011	3.0 x 10 ⁵	5.4771	5.4990	0.0810	1.4730	0.2134
	4	5.5 x 10 ⁵	5.7404				4.2 x 10 ⁵	5.6232				
	5	5.0 x 10 ⁵	5.6990				3.1 x 10 ⁵	5.4914				
	-	3.3 x 10 ⁶	6.5185				3.6 x 10 ⁶	6.5563				
	2	3.2 x 10 ⁶	6.5051				3.6 x 10 ⁶	6.5563				
High	e	3.2 x 10 ⁶	6.5051	6.5994	0.1460	2.2123	3.2 x 10 ⁶	6.5051	6.6007	0.0911	1.3802	-0.0012
	4	4.2 x 10 ⁶	6.6232				4.5×10^6	6.6532				
	5	7.0 x 10 ⁶	6.8451*				5.4×10^{6}	6.7324				

¹ SD = Standard Deviation ² RSD₇ = Relative Standard Deviation = $\frac{SD}{MEAN} \times 100$ ³ Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods)

* Grubbs' test outlier

	Sample	3M"	3M [™] Petrifilm [™] Rapic	npid Aerobic Co	d Aerobic Count Plate Method	thod			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD¹ (S,)	RSD ²	Mean Log ₁₀ Difference ³
	-	2.0 x 10 ¹	1.3010				6.0 x 10 ¹	1.7782				
	2	1.0 x 10 ¹	1.0000				8.0 x 10 ¹	1.9031				
Low	3	3.0 x 10 ¹	1.4771	1.2760	0.1721	13.4875	5.0 x 10 ¹	1.6990	1.7143	0.1791	10.4474	-0.2946
	4	2.0 x 10 ¹	1.3010				3.0 x 10 ¹	1.4771				
	5	2.0 x 10 ¹	1.3010				<1.0 x 10 ¹	<1.0000				
	-	2.6 x 10 ²	2.4150				6.0 x 10 ²	2.7782				
	2	1.2 x 10 ²	2.0792				5.9 x 10 ²	2.7709				
Medium	3	1.4×10^{2}	2.1461	2.0369	0.2773	13.6138	7.0 x 10 ²	2.8451	2.7747	0.0462	1.6650	-0.7374
	4	7.0 x 10 ¹	1.8451				5.2 x 10 ²	2.7160				
	5	5.0 x 10 ¹	1.6990				5.8 x 10 ²	2.7634				
	-	4.2 x 10 ⁶	6.6232				4.3 x 10 ⁶	6.6335				
	2	4.5×10^{6}	6.6532				4.8 x 10 ⁶	6.6812				
High	3	5.2 x 10 ⁶	6.7160	6.6852	0.0584	0.8736	5.4 x 10 ⁶	6.7324	6.7023	0.0458	0.6833	-0.0170
	4	5.9 x 10 ⁶	6.7709				5.2 x 10 ⁶	6.7160				
	5	4.6×10^{6}	6.6628				5.6 x 10 ⁶	6.7482				

Table 6. Method formarison Besults Retween the 3M²² Petrifilm²² Banid Aerobic fount Plate Method and the EDA/BAM Beference Method for Chicken Carcass Binsate

auto or montee comparison receive control and an automatic format Plate Mathod France in and an and an Apple Received and Apple		3M ¹	" Petrifilm [™] Bs	anid Aerohic C	3M [™] Petrifilm [™] Banid Aerohic Count Plate Method	pou			EDA/RAM APC			
	Sample				סמוור ו ומנה וווהר							
Contamination Level	Replicate	CFU/mL	Log ₁₀	Log ₁₀ Mean	SD' (S _r)	RSD ²	CFU/mL	Log ₁₀	Log ₁₀ Mean	SD' (S _,)	RSD ²	Mean Log ₁₀ Difference ³
	-	1.6 x 10 ⁴	4.2041				3.4 x 10 ⁴	4.5315				
	2	2.0 x 10 ⁴	4.3010				3.0 x 10 ⁴	4.4771				
Low	3	2.0 x 10 ⁴	4.3010	4.3192	0.0878	2.0328	2.6 x 10 ⁴	4.4150	4.4571	0.0489	1.0971	-0.1380
	4	2.8 x 10 ⁴	4.4472				2.8 x 10 ⁴	4.4472				
	5	2.2 x 10 ⁴	4.3424				2.6 x 10 ⁴	4.4150				
	-	4.2 x 10 ⁵	5.6232				4.3 x 10 ⁵	5.6335				
	2	4.4 x 10 ⁵	5.6435				4.2 x 10 ⁵	5.6232				
Medium	3	3.6 x 10 ⁵	5.5563	5.5935	0.0474	0.8474	3.6 x 10 ⁵	5.5563	5.6137	0.0599	1.0670	-0.0202
	4	3.4 x 10 ⁵	5.5315				3.6 x 10 ⁵	5.5563				
	5	4.1 x 10 ⁵	5.6128				5.0 x 10 ⁵	5.6990				
	-	1.7 x 10 ⁶	6.2304				1.7 x 10 ⁶	6.2304				
	2	1.5 x 10 ⁶	6.1761				1.7 x 10 ⁶	6.2304				
High	3	1.8 x 10 ⁶	6.2553	6.2140	0.0300	0.4828	1.8 x 10 ⁶	6.2553	6.2545	0.0288	0.4605	-0.0405
	4	1.6 x 10 ⁶	6.2041				2.0 x 10 ⁶	6.3010				
	5	1.6 x 10 ⁶	6.2041				1.8 x 10 ⁶	6.2553				
	-											

 1 SD = Standard Deviation 2 RSD₇ = Relative Standard Deviation = $\frac{\text{SD}}{\text{MEAN}} \times 100$ 3 Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods)

Table 7. Method Comparison Results Between the 3M ¹ " Petrifilm ¹¹ " Rapid Aerobic Count Plate Method and the FDA/BAM Reference Method for Fresh Swai	sults Between	the 3M [™] Petrifil	m [™] Rapid Aero	bic Count Plate	Method and the	FDA/BAM Refe	rence Method f	or Fresh Swai				
	Sample	3M [*]	″ Petrifilm™ Ra	3M [™] Petrifilm [™] Rapid Aerobic Count Plate Method	ount Plate Meth	pot			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S ₁)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₁)	RSD ²	Mean Log ₁₀ Difference ³
		1.3 x 10 ³	3.1139				1.3 x 10 ³	3.1139				
	2	1.4 x 10 ³	3.1461			<u>.</u>	1.8 x 10 ³	3.2553				
Low	с	1.3 x 10 ³	3.1139	3.1134	0.0237	0.7612	1.3 x 10 ³	3.1139	3.1719	0.0666	2.0997	-0.0585
	4	1.3 x 10 ³	3.1139				1.4 x 10 ³	3.1461				
	5	1.2 x 10 ³	3.0792				1.7 x 10 ³	3.2304				
	-	1.4 x 10 ⁴	4.1461				2.9 x 10 ⁴	4.4624				
	2	1.8 x 10⁴	4.2553				1.7 x 10 ⁴	4.2304				
Medium	ŝ	1.4 x 10 ⁴	4.1461	4.0643	0.2003	4.9283	2.6 x 10 ⁴	4.4150	4.3402	0.1429	3.2925	-0.2760
	4	1.1 x 10 ⁴	4.0414			<u>.</u>	2.8 x 10 ⁴	4.4472				
	5	5.4 x 10 ³	3.7324				1.4 x 10 ⁴	4.1461				
	-	4.0×10^{7}	7.6021				4.0×10^{7}	7.6021				
	2	4.7 x 10 ⁷	7.6721				5.0 x 10 ⁷	7.6990				
High	с	4.8 x 10 ⁷	7.6812	7.6682	0.0472	0.6155	5.0 x 10 ⁷	7.6990	7.6602	0.0531	0.6932	0.0080
	4	4.5 x 10 ⁷	7.6532			<u>.</u>	5.0 x 10 ⁷	7.6990				
	5	5.4 x 10 ⁷	7.7324				4.0 x 10 ⁷	7.6021				
Table 8. Method Comparison Results Between the 3M ¹⁰ Petrifilm ¹⁰ Rapid Aerobic Count Plate Method and the FDA/BAM Reference Method for Fresh Tuna	sults Between	the 3M™ Petrifil	m™ Rapid Aerol	bic Count Plate	Method and the	FDA/BAM Refe	rence Method f	or Fresh Tuna				
	Samle	3M ⁷	[™] Petrifilm [™] Ra	3M [™] Petrifilm [™] Rapid Aerobic Count Plate Method	ount Plate Meth	lod			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S,)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
		8.0 x10 ¹	1.9031				2.0 x 10 ²	2.3010				
	2	8.0 x 10 ¹	1.9031				5.8 x 10 ²	2.7634				
Low	ę	1.6 x 10 ²	2.2041	1.8179	0.3288	18.0868	3.1 x 10 ²	2.4914	2.4586	0.4561	18.5512	-0.6401
	4	6.0 x 10 ¹	1.7782				9.1 x 10 ²	2.9590				
	5	2.0 x 10¹	1.3010				6.0 x 10 ¹	1.7782				
	1	1.4 x 10 ⁵	5.1461*				3.8 x 10 ⁴	4.5798				
	2	1.0 x 10 ⁴	4.0000				1.2 x 10 ⁵	5.0792				
Medium	3	2.4 x 10 ⁴	4.3802	4.4030	0.4430	10.0613	7.2 x 10 ⁴	4.8573	4.8481	0.2024	4.1748	-0.4451
	4	2.2 x 10 ⁴	4.3424				5.3 x 10 ⁴	4.7243				
	5	1.4 x 10 ⁴	4.1461				1.0 x 10 ⁵	5.0000				
	1	2.9 x 10⁵	5.4624				3.4 x 10 ⁴	4.5315				
	2	1.4 x 10 ⁵	5.1461				5.6 x 10 ⁴	4.7482				
High	3	1.8 x 10 ⁵	5.2553	5.2523	0.1873	3.5661	6.1 x 10 ⁴	4.7853	4.6253	0.1311	2.8344	0.6271
	4	1.0 x 10 ⁵	5.0000				3.2 x 10 ⁴	4.5051				

SD = Standard Deviation
²RSD₇ = Relative Standard Deviation = ^{SD}/_{MEAN} × 100
³Mean Difference = Candidate Log Mean - Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods)
* Grubbs' test outlier

4.5563

3.6 x 10⁴

5.3979

2.5 x 10⁵

2

	Sample	3M [*]	" Petrifilm™ Ra	3M [™] Petrifilm [™] Rapid Aerobic Count Plate Method	ount Plate Met	hod			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD¹ (S,)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S,)	RSD ²	Mean Log ₁₀ Difference ³
	-	3.6 x 10 ⁵	5.5563				8.6 x 10 ⁴	4.9345				
	2	2.0 x 10 ⁶	6.3010				1.1 x 10 ⁵	5.0414				
Low	3	6.6 x 10 ⁵	5.8195	5.7699	0.3223	5.5859	1.0 x 10 ⁵	5.0000	4.9729	0.0467	0.9391	0.7970
	4	4.8 x 10 ⁵	5.6812				8.6 x 10 ⁴	4.9345				
	5	3.1 x 10 ⁵	5.4914				9.0 x 10⁴	4.9542				
	-	1.1 x 10 ⁶	6.0414				1.2 x 10 ⁵	5.0792				
	2	1.4 x 10 ⁶	6.1461				4.2 x 10 ⁵	5.6232*				
Medium	က	1.6 x 10 ⁶	6.2041	6.1705	0.0800	1.2965	1.1 x 10 ⁵	5.0414	5.2248	0.2326	4.4518	0.9457
	4	1.7 x 10 ⁶	6.2304				1.5 x 10 ⁵	5.1761				
	5	1.7 x 10 ⁶	6.2304				1.6 x 10 ⁵	5.2041				
	-	1.2 x 107	7.0792				1.0 x 10 ⁶	6.0000				
	2	1.1 x 10 ⁷	7.0414				1.2 x 10 ⁶	6.0792				
High	3	1.5 x 10 ⁷	7.1761	7.1559	0.0959	1.3402	2.1 x 10 ⁶	6.3222	6.1503	0.1226	1.9934	1.0056
	4	1.6 x 10 ⁷	7.2041				1.4 x 10 ⁶	6.1461				
	5	1.9 x 10 ⁷	7.2788				1.6 x 10 ⁶	6.2041				

Table 10. Method Comparison Results Between the 3M" Petrifilm" Rapid Aerobic Count Plate Method and the FDA/BAM Reference Method for Easy Peel Shrimp

ניתות ומינו המינות המינות המינות המינות המינות והמינות המשורה המימות היות המינות המינות המינות המינות המינות ה								`				
	Sample	3M [*]	" Petrifilm"" Ré	3M TM Petrifilm TM Rapid Aerobic Count Plate Method	unt Plate Met	hod			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S _r)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	-	1.4×10^{2}	2.1461				1.3×10^{2}	2.1139*				
	2	2.3×10^{2}	2.3617				2.7×10^{2}	2.4314				
Low	3	3.1×10^{2}	2.4914	2.4060	0.1630	6.7747	2.6 x 10 ²	2.4150	2.3645	0.1407	5.9505	0.0415
	4	2.9 x 10 ²	2.4624				2.6 x 10 ²	2.4150				
	5	3.7×10^{2}	2.5682				2.8 x 10 ²	2.4472				
	-	8.0 x 10 ²	2.9031				9.5 x 10 ²	2.9777				
	2	8.0 x 10 ²	2.9031				1.0×10^{3}	3.0000				
Medium	3	6.0 x 10 ³	3.7782	3.0883	0.4497	14.5614	6.8 x 10 ²	2.8325	2.9347	0.0805	2.7430	0.1536
	4	1.8 x 10 ³	3.2553				1.0×10^{3}	3.0000				
	5	4.0×10^{2}	2.6021				7.3 x 10 ²	2.8633				
	÷	1.4 x 10 ⁵	5.1461				1.1 x 10 ⁵	5.0414				
	2	1.4 x 10 ⁵	5.1461				1.1 x 10 ⁵	5.0414				
High	3	1.2 x 10 ⁵	5.0792	5.1253	0.0439	0.8565	1.2 x 10 ⁵	5.0792*	5.0490	0.0169	0.3347	0.0764
	4	1.2 x 10 ⁵	5.0792				1.1 x 10 ⁵	5.0414				
	5	1.5×10^{5}	5.1761				1.1 x 10 ⁵	5.0414				

²RSD₇ = Relative Standard Deviation = ^{SD}/_{MEAN} × 100 ³Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods) *Grubbs' test outlier

Sample Contamination Level Replicate											
		3M TM Petrifilm TM Rapid	pid Aerobic Co	Aerobic Count Plate Method	por			FDA/BAM APC			
	te CFU/mL	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	1.1 x 10 ³	3.0414				1.7 x 10 ³	3.2304				
2	1.2 x 10 ³	3.0792				1.6 x 10 ³	3.2041		_		
3 Low	9.4 x 10 ²	2.9731	3.0125	0.0461	1.5303	1.8 x 10 ³	3.2553	3.2398	0.0283	0.8735	-0.2273
4	9.8 x 10 ²	2.9912				1.9 x 10 ³	3.2788		_		
5	9.5 x 10 ²	2.9777				1.7×10^{3}	3.2304		_		
-	3.3 x 10⁴	4.5185				3.0 x 10 ⁴	4.4771				
2	3.2 x 10⁴	4.5051				3.8 x 10⁴	4.5798				
Medium 3	3.8 x 10 ⁴	4.5798	4.5606	0.0550	1.2060	4.0 x 10 ⁴	4.6021	4.5493	0.0482	1.0595	0.0113
4	3.6 x 10 ⁴	4.5563				3.6 x 10⁴	4.5563				
5	4.4 x 10 ⁴	4.6435				3.4 x 10⁴	4.5315				
-	4.0 x 10 ⁵	5.6021				3.0 x 10 ⁵	5.4771				
2	3.4 x 10 ⁵	5.5315				3.6 x 10 ⁵	5.5563		_		
High 3	3.1 x 10 ⁵	5.4914	5.5613	0.0486	0.8739	3.6 x 10 ⁵	5.5563	5.5496	0.0451	0.8127	0.0117
4	4.0 x 10 ⁵	5.6021				3.6 x 10 ⁵	5.5563		_		
5	3.8 x 10 ⁵	5.5798				4.0×10^{5}	5.6021		_		

Table 12. Method Comparison Results Between the 3M¹¹ Petrifilm¹² Rapid Aerobic Count Plate Method and the FDA/BAM Reference Method for Frozen Blueberries

		Comple	3M)	" Petrifilm" R	3M [™] Petrifilm [™] Rapid Aerobic Count Plate Method	unt Plate Met	hod			FDA/BAM APC			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₁)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	4.0 x 10 ¹	1.6021				2.0 x 10 ¹	1.3010				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	4.0 x 10 ¹	1.6021				4.0 x 10 ¹	1.6021				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Low	ę	6.0 x 10 ¹	1.7782	1.6475	0.1297	7.8725	6.0 x 10 ¹	1.7782	1.5521	0.2402	15.4758	0.0951
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	3.0 x 10 ¹	1.4771				2.0 x 10 ¹	1.3010				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	6.0 x 10 ¹	1.7782				6.0 x 10 ¹	1.7782				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	9.3 x 10 ³	3.9685				8.0 x 10 ³	3.9031				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	8.4 x 10 ³	3.9243				8.5 x 10 ³	3.9294				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Medium	3	8.0 x 10 ³	3.9031	3.9573	0.0531	1.3418	1.4 x 10 ⁴	4.1461	3.9806	0.1266	3.1804	-0.0233
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	1.1 x 10 ⁴	4.0414				1.2 x 10 ⁴	4.0792				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	8.9 x 10 ³	3.9494				7.0 x 10 ³	3.8451				
2 3.4 × 10 ⁴ 4.5315 3.4 × 10 ⁴ 4.5315 0.0650 3 5.2 × 10 ⁴ 4.7160 4.6333 0.0833 1.7979 4.5 × 10 ⁴ 4.6131 0.0650 4 3.6 × 10 ⁴ 4.5563 4.6131 4.6522 4.6131 0.0650 5 4.8 × 10 ⁴ 4.5632 4.6121 5.0 × 10 ⁴ 4.6021 5.0 × 10 ⁴ 4.6021		-	4.8 x 10 ⁴	4.6812				3.8 x 10 ⁴	4.5798				
3 5.2 × 10 ⁴ 4.7160 4.6333 0.0833 1.7979 4.5 × 10 ⁴ 4.6532 4.6131 0.0650 4 3.6 × 10 ⁴ 4.5563 4.5 × 10 ⁴ 4.6021 4.6131 0.0650 5 4.8 × 10 ⁴ 4.6812 5.0 × 10 ⁴ 4.6990 4.6990		2	3.4 x 10 ⁴	4.5315				3.4 x 10 ⁴	4.5315				
3.6 x 10 ⁴ 4.5563 4.0 x 10 ⁴ 4.8 x 10 ⁴ 4.6812 5.0 x 10 ⁴	High	3	5.2 x 10⁴	4.7160	4.6333	0.0833	1.7979	4.5 x 10 ⁴	4.6532	4.6131	0.0650	1.4090	0.0202
4.8 x 10 ⁴ 4.6812 5.0 x 10 ⁴		4	3.6 x 10 ⁴	4.5563				4.0 x 10 ⁴	4.6021				
	_	5	4.8 x 10 ⁴	4.6812				5.0 x 10 ⁴	4.6990				

¹ SD = Standard Deviation ² RSD₇ = Relative Standard Deviation = $\frac{\text{SD}}{\text{MEAN}} \times 100$ ³ Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods)

Table 13. Method Comparison Results Between the 3M TM Petrifilm TM Rapid Aerobic	tesults Between	the 3M TM Petrif	ilm™ Rapid Aero	obic Count Plate	Method and th	e FDA/BAM Re	Count Plate Method and the FDA/BAM Reference Method for Mediterranean Apricots	for Mediterrar	iean Apricots			
	Samle	3M ⁷	3M TM Petrifilm TM Rapid	ipid Aerobic Co	Aerobic Count Plate Method	por			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₁)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₁)	RSD ²	Mean Log ₁₀ Difference ³
		3.5 x 10 ³	3.5441				3.4 x 10 ³	3.5315				
	2	3.1 x 10 ³	3.4914				3.3×10^3	3.5185				
Low	3	4.0 x 10 ³	3.6021	3.5373	0.0431	1.2184	3.2 x 10 ³	3.5051	3.5236	0.0118	0.3349	0.0137
	4	3.5 x 10 ³	3.5441				3.4 x 10 ³	3.5315				
	5	3.2 x 10 ³	3.5051				3.4 x 10 ³	3.5315				
		5.9 x 10 ⁴	4.7709				4.8 x 10 ⁴	4.6812				
	2	4.4 x 10 ⁴	4.6435				6.2 x 10 ⁴	4.7924				
Medium	3	5.0 x 10 ⁴	4.6990	4.7248	0.0555	1.1746	5.8 x 10 ⁴	4.7634	4.7433	0.0442	0.9318	-0.0185
	4	5.4 x 10 ⁴	4.7324				5.8 x 10 ⁴	4.7634				
	5	6.0 x 10 ⁴	4.7782				5.2 x 10 ⁴	4.7160				
		1.4 x 10 ⁶	6.1461				1.3 x 10 ⁶	6.1139				
	2	1.2 x 10 ⁶	6.0792				1.1 x 10 ⁶	6.0414				
High	ŝ	1.3 x 10 ⁶	6.1139	6.1263	0.0298	0.4864	1.3 x 10 ⁶	6.1139	6.1059	0.0386	0.6322	0.0204
	4	1.4 x 10 ⁶	6.1461				1.4 x 10 ⁶	6.1461				
	5	1.4 x 10 ⁶	6.1461				1.3 x 10 ⁶	6.1139				
			- - - -				:					
Table 14. Method Comparison Results Between the 3M ^{**} Petrifilm ^{**} Rapid Aerobic	lesults Between	the 3M ^m Petrif	ilm'" Rapid Aero	obic Count Plate	Method and th	e FDA/BAM Re	Count Plate Method and the FDA/BAM Reference Method for Creamy Salad Dressing	tor Creamy Sa	alad Dressing			
	Sample	3M ⁷	3M TM Petrifilm TM Rapid	ipid Aerobic Co	Aerobic Count Plate Method	por			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₁)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	-	6.0 x 10 ¹	1.7782				4.0 x 10 ¹	1.6021*				
	2	6.0 x 10 ¹	1.7782				2.0 x 10 ¹	1.3010				
Low	3	8.0 x 10 ¹	1.9031	1.7327	0.1297	7.4854	2.0×10^{1}	1.3010	1.3612	0.1346	9.8883	0.3703
	4	4.0 x 10 ¹	1.6021				2.0 x 10 ¹	1.3010				
	5	4.0 x 10 ¹	1.6021				2.0 x 10 ¹	1.3010				
	1	2.0 x 10 ²	2.3010				1.9 x 10 ²	2.2788				
	2	2.4 x 10 ²	2.3802				1.8 x 10 ²	2.2553				
Medium	3	2.2 x 10 ²	2.3424	2.3290	0.0397	1.7046	2.0×10^{2}	2.3010	2.2371	0.0623	2.7849	0.0919
	4	1.9 x 10 ²	2.2788				1.6 x 10 ²	2.2041				

SD = Standard Deviation

² Point and the standard Deviation = $\frac{\text{SD}}{\text{MEAN}} \times 100$ ³ Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods) * Grubbs' test outlier

0.0152

1.4268

0.0708

4.9621

7.1 x 10⁴

9.2 x 10⁴

 9.0×10^4

1.0 x 10⁵

1.1813

0.0588

4.9774

1.1 x 10⁵ 9.8 x 10⁴ 9.6 x 10⁴

2.1461 5.0414 4.8513 5.00004.9638 4.9542

 1.4×10^{2} 1.1 x 10⁵

2.3424 4.9912 4.8808 5.0414 4.9912 4.9823

 2.2×10^{2}

2

9.8 x 10⁴ 7.6 x 10⁴

-

N ო 4 2

High

	Sample	3M [*]	3M TM Petrifilm TM Rapid	apid Aerobic C	Aerobic Count Plate Method	thod			FDA/BAM APC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S,)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S,)	RSD ²	Mean Log ₁₀ Difference ³
	-	2.8 x 10 ⁵	5.4472				1.9 x 10 ⁵	5.2788*				
	2	2.9 x 10 ⁵	5.4624				2.6 x 10 ⁵	5.4150				
Low	ო	2.3 x 10 ⁵	5.3617	5.4057	0.0523	0.9675	2.7 x 10 ⁵	5.4314	5.3971	0.0703	1.3026	0.0087
	4	2.2 x 10 ⁵	5.3424				2.9 x 10 ⁵	5.4624				
	5	2.6 x 10 ⁵	5.4150				2.5 x 10 ⁵	5.3979				
	-	2.5 x 10 ⁶	6.3979				2.6 x 10 ⁶	6.4150				
	2	2.9 x 10 ⁶	6.4624				2.8 x 10 ⁶	6.4472				
Medium	ო	2.5 x 10 ⁶	6.3979	6.4209	0.0270	0.4205	2.3 x 10 ⁶	6.3617	6.4235	0.0388	0.6040	-0.0026
	4	2.6 x 10 ⁶	6.4150				2.7 x 10 ⁶	6.4314				
	S	2.7 x 10 ⁶	6.4314				2.9 x 10 ⁶	6.4624				
	-	1.3×10^{8}	8.1139				1.1 x 10 ⁸	8.0414				
	2	1.5×10^{8}	8.1761				1.4 x 10 ⁸	8.1461				
High	ę	1.7 x 10 ⁸	8.2304	8.1741	0.0460	0.5628	1.9 x 10 ⁸	8.2788	8.1499	0.0953	1.1693	0.0242
	4	1.6 x 10 ⁸	8.2041				1.2 x 10 ⁸	8.0792				
	5	1.4×10^{8}	8.1461				1.6 x 10 ⁸	8.2041				

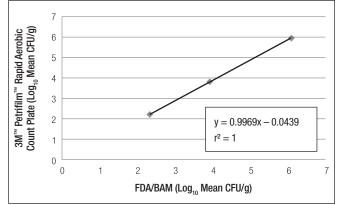
~
asta
3
č
Ó.
_
5
es
e
È
<u> </u>
5
<u>_</u>
-
-
ĸ
Method
<u>+</u>
5
~
≥
ence
0
e
fer
ef
~
Ē
Ş
4
<
/BAM
5
4
õ
£
Ð
Ĭ
₽
p
Ц
ar
0
0
Ļ
Method
Ð
Š
~
late
4
b)
la:
_
Count
=
3
2
Ö
C 2
p
ldo
robic
Aerobi
Aer
Aer
pid Aer
apid Aer
pid Aer
'Rapid Aer
apid Aer
'Rapid Aer
m™ Rapid Aer
m™ Rapid Aer
ifilm™ Rapid Aer
ifilm™ Rapid Aer
etrifilm™ Rapid Aer
etrifilm™ Rapid Aer
ifilm™ Rapid Aer
etrifilm™ Rapid Aer
** Petrifilm [™] Rapid Aer
** Petrifilm [™] Rapid Aer
** Petrifilm [™] Rapid Aer
3M TM Petrifilm TM Rapid Aer
3M TM Petrifilm TM Rapid Aer
3M TM Petrifilm TM Rapid Aer
e 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
esults Between the 3M TM Petrifilm TM Rapid Aer
Between the 3M TM Petrifilm TM Rapid Aer
ι Results Between the 3M [™] Petrifilm [™] Rapid Aer
ι Results Between the 3M [™] Petrifilm [™] Rapid Aer
ι Results Between the 3M [™] Petrifilm [™] Rapid Aer
ison Results Between the 3M TM Petrifilm TM Rapid Aer
ison Results Between the 3M TM Petrifilm TM Rapid Aer
ι Results Between the 3M [™] Petrifilm [™] Rapid Aer
ison Results Between the 3M TM Petrifilm TM Rapid Aer
ison Results Between the 3M TM Petrifilm TM Rapid Aer
mparison Results Between the 3M TM Petrifilm TM Rapid Aer
mparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
mparison Results Between the 3M TM Petrifilm TM Rapid Aer
Method Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Method Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Comparison Results Between the 3M TM Petrifilm TM Rapid Aer
Method Comparison Results Between the 3M TM Petrifilm TM Rapid Aer

Sample Contomination Loval Dominate												
	ble	3M™ Pet	rifilm™ Rap	3M [™] Petrifilm [™] Rapid Aerobic Count Plate Method	int Plate Meth	po			SMEDP SPC			
		CFU/g I	Log ₁₀ I	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
-	1.0	1.0 x 10 ² 2	2.0000				2.0 x 10 ¹	1.3010				
2		7.0 x 10 ¹ 1.	1.8451				4.0 x 10 ¹	1.6021				
Low 3		1.0 x 10 ² 2	2.0000	1.9053	0.0971	5.0963	3.0 x 10 ¹	1.4771	1.4919	0.2044	13.7006	0.4124
4	8.0	8.0 x 10 ¹ 1	1.9031				6.0 x 10 ¹	1.7782				
5		6.0 x 10 ¹ 1	1.7782				2.0 x 10 ¹	1.3010				
1	1.1	1.1 x 10 ⁴ 4.	4.0414				9.4 x 10 ³	3.9731				
2		1.0 x 10 ⁴ 4.	4.0000				1.0 x 10 ⁴	4.0000				
Medium 3	9.0	9.0 x 10 ³ 3	3.9542	3.9883	0.0345	0.8650	1.1 x 10 ⁴	4.0414	4.0076	0.0323	0.8060	-0.0193
4	9.6	9.6 x 10 ³ 3	3.9823				9.6 x 10 ³	3.9823				
5		9.2 x 10 ³ 3	3.9638				1.1 x 10 ⁴	4.0414				
-	1.3	1.3 x 10 ⁵ 5	5.1139				1.5 x 10 ⁵	5.1761				
2		1.2 x 10 ⁵ 5	5.0792				1.2 x 10 ⁵	5.0792				
High 3	1.3	1.3 x 10 ⁵ 5.	5.1139	5.1303	0.0580	1.1305	1.5 x 10 ⁵	5.1761	5.1616	0.0552	1.0694	-0.0313
4	1.7	1.7 x 10 ⁵ 5.	5.2304*				1.7 x 10 ⁵	5.2304				
5		1.3 x 10 ⁵ 5.	5.1139				1.4 x 10 ⁵	5.1461				

²RSD₇ = Relative Standard Deviation = ^{SD}/_{MEAN} × 100 ³Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods) *Grubbs' test outlier

Table 17. Method Comparison Results Between the 3M" Petrifilm" Rapid Aerobic Count Plate Method and the SMEDP Reference Method for Dry Milk Powder	lesults Betweer	n the 3M ^{TT} Petri	'ilm'''' Rapid Aer	obic Count Plate	B Method and the	e SMEDP Refer	ence Method fc	r Dry Milk Pow	vder			
	Sample	3M	3M [™] Petrifilm [™] Rapid		Aerobic Count Plate Method	pod			SMEDP SPC			
Contamination Level	Replicate	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD' (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	1	3.8 x 10 ²	2.5798				3.4 x 10 ²	2.5315				
	2	4.4 x 10 ²	2.6435				4.2 x 10 ²	2.6232				
Low	r	4.2 x 10 ²	2.6232	2.6204	0.0300	1.1449	3.4 x 10 ²	2.5315	2.5337	0.0549	2.1668	0.0866
	4	4.5 x 10 ²	2.6532				3.0×10^{2}	2.4771				
	IJ	4.0 x 10 ²	2.6021				3.2 x 10 ²	2.5051				
	+	4.0 x 10 ⁵	5.6021				3.5 x 10 ⁵	5.5441				
	2	4.4 x 10 ⁵	5.6435				3.4 x 10 ⁵	5.5315				
Medium	ę	5.0 x 10 ⁵	5.6990	5.6111	0.0636	1.1335	3.6 x 10 ⁵	5.5563	5.5710	0.0442	0.7934	0.0401
	4	3.8 x 10 ⁵	5.5798				3.8 x 10⁵	5.5798				
	5	3.4 x 10 ⁵	5.5315				4.4 x 10 ⁵	5.6435				
	1	6.4 x 10 ⁶	6.8062				3.5 x 10 ⁶	6.5441				
	2	6.4 x 10 ⁶	6.8062				5.4 x 10 ⁶	6.7324				
High	З	5.6 x 10 ⁶	6.7482	6.7440	0.0683	1.0128	4.5 x 10 ⁶	6.6532	6.6617	0.0739	1.1093	0.0823
	4	5.2 x 10 ⁶	6.7160				4.6 x 10 ⁶	6.6628				
	5	4.4 x 10 ⁶	6.6435				5.2 x 10 ⁶	6.7160				
¹ SD = Standard Deviation	5				-							

Mathod for Dry Milk Powder the SMEDD Ref Dioto Banid Datrifilm™ 3MTM ę ò C T Tahla 17 Mathr


² RSD₇ = Relative Standard Deviation = $\frac{\text{SD}}{\text{MEAN}} \times 100$ ³ Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods)

summer of the second of the se		3M ⁷	3M [™] Petrifilm [™] Rapid	pid Aerobic Co	Aerobic Count Plate Method	pod bon			SMEDP SPC			
Contamination Level	Replicate	CFU/mL	Log ₁₀	Log ₁₀ Mean	SD' (S _r)	RSD ²	CFU/g	Log ₁₀	Log ₁₀ Mean	SD ¹ (S ₇)	RSD ²	Mean Log ₁₀ Difference ³
	-	<10	<1.0000				<10	<1.0000				
	2	<10	<1.0000				<10	<1.0000				
Uninoculated	e	<10	<1.0000	I	I		<10	<1.0000	I			N/A
	4	<10	<1.0000				<10	<1.0000				
	5	<10	<1.0000				<10	<1.0000				
	-	1.6 x 10 ³	3.2041				1.4 x 10 ³	3.1461				
	2	1.5 x 10 ³	3.1761				1.3 x 10 ³	3.1139				
Low	ę	1.3 x 10 ³	3.1139	3.1689	0.0390	1.2307	1.4 x 10 ³	3.1461	3.1263	0.0298	0.9532	0.0426
	4	1.6 x 10 ³	3.2041				1.2 x 10 ³	3.0792				
	5	1.4 x 10 ³	3.1461				1.4 x 10 ³	3.1461				
	-	4.9 x 10 ⁴	4.6902				5.7 x 10 ⁴	4.7559				
	2	5.8 x 10 ⁴	4.7634				5.4 x 10 ⁴	4.7324				
Medium	ę	5.4 x 10 ⁴	4.7324	4.7269	0.0267	0.5649	5.2 x 10 ⁴	4.7160	4.6957	0.0606	1.2905	0.0312
	4	5.2 x 10 ⁴	4.7160				4.7 x 10 ⁴	4.6721				
	5	5.4 x 10 ⁴	4.7324				4.0 x 10 ⁴	4.6021				
	-	1.1 x 10 ⁶	6.0414				9.8 x 10 ⁵	5.9912				
	2	1.0 x 10 ⁶	6.0000				9.2 x 10 ⁵	5.9638				
High	3	1.0 x 10 ⁶	6.0000	6.0010	0.0275	0.4583	1.0 x 10 ⁶	6.0000	5.9570	0.0472	0.7923	0.0440
	4	1.0 x 10 ⁶	6.0000				8.9 x 10 ⁵	5.9494				
	5	9.2 x 10 ⁵	5.9638				7.6 x 10 ⁵	5.8808				
1 SD = Standard Deviation	U.											

Table 18. Method Comparison Besults Between the 3M²² Petrifilm²² Bapid Aerobic Count Plate Method and the SMEDP Beference Method for Pasteurized Skim Milk

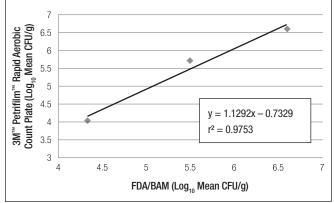

² RSD₇ = Relative Standard Deviation = $\frac{SD}{M \in AN} \times 100$ ³ Mean Difference = Candidate Log Mean – Reference Log Mean (A mean difference absolute value of greater than 0.5 indicates a statistical significant difference between methods)

Figure 1. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Raw Ground Beef

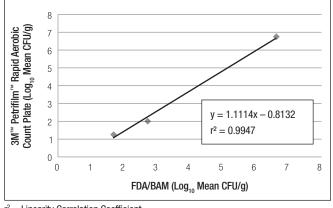

 r^2 = Linearity Correlation Coefficient

Figure 2. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Raw Ground Pork

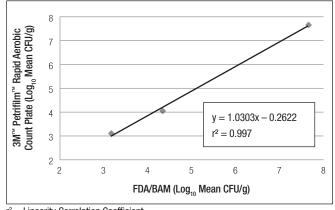

 r^2 = Linearity Correlation Coefficient

Figure 3. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Raw Ground Turkey

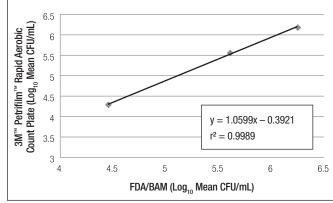

 r^2 = Linearity Correlation Coefficient

Figure 5. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Fresh Swai

 r^2 = Linearity Correlation Coefficient

Figure 4. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Chicken Carcass Rinsate

r² = Linearity Correlation Coefficient

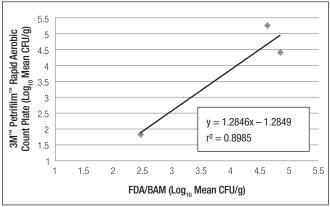
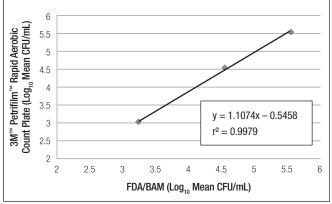


Figure 6. Method Comparison Results of $3M^{\rm TM}$ Petrifilm^ $^{\rm TM}$ Rapid Aerobic Count Plate Method vs. FDA/BAM for Fresh Tuna

 r^2 = Linearity Correlation Coefficient


Figure 7. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Fresh Tiger Shrimp

7.5 3MTM PetrifilmTM Rapid Aerobic Count Plate (Log₁₀ Mean CFU/g) 7 6.5 6 5.5 5 y = 1.1468x + 0.1163 $r^2 = 0.9936$ 4.5 4 4.5 5 6 4 5.5 6.5 FDA/BAM (Log₁₀ Mean CFU/g)

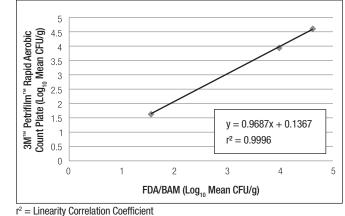
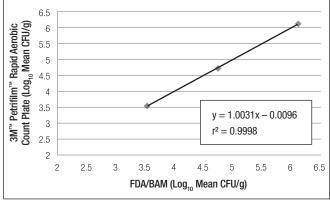
 r^2 = Linearity Correlation Coefficient

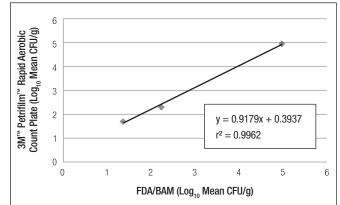
 r^2 = Linearity Correlation Coefficient

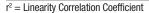
Figure 9. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Cherry Tomato Wash

r² = Linearity Correlation Coefficient

Figure 10. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Frozen Blueberries




Figure 11. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Mediterranean Apricots

r² = Linearity Correlation Coefficient

Figure 12. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Creamy Salad Dressing

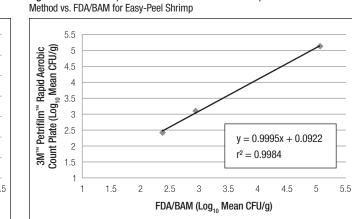
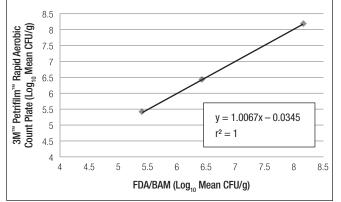



Figure 8. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate

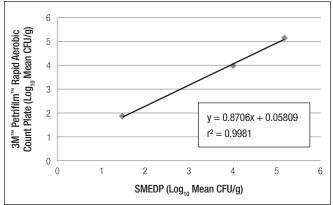

Page 21

Figure 13. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. FDA/BAM for Fresh Pasta

 r^2 = Linearity Correlation Coefficient

Figure 14. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. SMEDP for Vanilla Ice Cream

 r^2 = Linearity Correlation Coefficient

Figure 15. Method Comparison Results of 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method vs. SMEDP for Dry Milk Powder

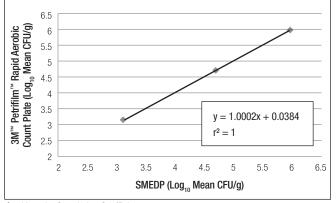
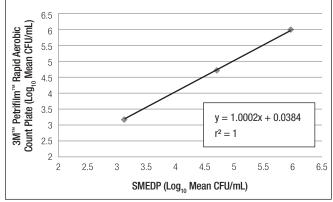



Figure 16. Method Comparison Results of $3M^{M}$ Petrifilm^M Rapid Aerobic Count Plate Method vs. SMEDP for Pasteurized Skim Milk

 r^2 = Linearity Correlation Coefficient

3M[™] Petrifilm[™] Rapid Aerobic Count Plate — Robustness Study

Conducted by 3M Food Safety

This robustness study was conducted according to AOAC guidelines outlined in the AOAC General Referee approved harmonized PTM/OMA validation protocol.

Robustness Testing Methodology

This study evaluated the ability of the $3M^{\text{TM}}$ PetrifilmTM Rapid Aerobic Count Plate to remain unaffected by variations in method parameters that might be expected to occur when the method is performed by an end user. The effects of perturbations in three method parameters were investigated:

- 1) Incubation time of the 3M Petrifilm RAC Plate (suggested 23–25 hours)*: 22, 24 and 26 hours.
- 2) Incubation temperature of the 3M Petrifilm RAC Plate method (suggested for dairy 31–33°C, suggested for Other Foods 34–36°C)**: Dairy 30, 32 and 34°C, Other Foods 33, 35 and 37°C.
- **3)** Various diluents: Butterfield's phosphate buffer, 0.1% peptone water, peptone salt diluent, buffered peptone water, saline solution (0.85–0.90%), bisulphite-free letheen broth and distilled water.

Testing was conducted with vanilla ice cream and raw ground beef.

*AOAC suggested times. **AOAC suggested temperatures.

Robustness Testing Results

The log transformed results of the changes in incubation time, incubation temperature and diluent for both matrices (vanilla ice cream and raw ground beef) were analyzed by a nested analysis of variance (ANOVA). The data were calculated using the log counts from each plate, each replicate for each robustness parameter. The mean log difference data are presented in Tables 1 and 2.

			Mean Log Difference*	
	Robustness Parameters	High	Medium	Low
	0.1% Peptone Water	0.024	-0.003	0.005
	Buffered Peptone Water	-0.046	-0.026	-0.030
	Butterfield's Phosphate Buffer	-0.008	0.000	-0.047
Diluent	Letheen Broth	-0.007	-0.002	0.018
	Peptone Salt	0.032	0.015	0.061
	Saline Solution	0.023	0.003	0.034
	Sterile Water	-0.017	0.013	-0.041
	22 Hours	0.016	0.101	0.015
Time	24 Hours	-0.006	-0.002	-0.004
	26 Hours	-0.010	0.001	-0.011
	30°C	0.030	-0.016	0.033
Temperature	32°C	-0.026	-0.048	-0.031
	34°C	-0.004	0.064	-0.003

Table 1. Summary of the Mean Log Difference for the Robustness Parameters for Vanilla Ice Cream

*Mean Log Difference: Difference in overall mean values at contamination level minus the individual mean for variable tested at the corresponding contamination level.

Table 2. Summary of the Mean Log Difference for the Robustness Parameters for Raw Ground Beef

			Mean Log Difference*	
	Robustness Parameters	High	Medium	Low
	0.1% Peptone Water	0.021	-0.051	0.054
	Buffered Peptone Water	-0.111	-0.096	-0.175
	Butterfield's Phosphate Buffer	0.122	0.059	0.116
Diluent	Letheen Broth	-0.312	-0.288	-0.229
	Peptone Salt	0.013	0.003	0.065
	Saline Solution	0.093	0.030	0.047
	Sterile Water	0.172	0.345	0.120
	22 Hours	0.010	0.012	0.041
Time	24 Hours	0.002	0.006	-0.008
	26 Hours	-0.012	-0.019	-0.034
	33°C	-0.065	-0.065	-0.098
Temperature	35°C	-0.011	0.006	0.032
	37°C	0.074	0.060	0.065

*Mean Log Difference: Difference in overall mean values at contamination level minus the individual mean for variable tested at the corresponding contamination level. **NOTE:** The values (except those bolded) are ≤ 0.2 logs.

Discussion

In this robustness study, three parameters were evaluated: incubation time, incubation temperature and diluents according to the factorial design outlined in the approved protocol. The testing was done with two food matrices: vanilla ice cream and raw ground beef. The data was analyzed using a nested, one way ANOVA. In conducting the analysis, we first determined if there were any statistically significant differences. If statistically significant differences were found, mean log difference was calculated to determine if the differences were practically different. Practical difference is typically $\leq 0.2 \log s$.

For vanilla ice cream, incubation time was not significant at any time at the low, medium or high contamination levels. Incubation temperature was significant at all three contamination levels (p=0.000 at all three levels). However, there were no practical differences at any of the three contamination levels. Similarly, diluents were also significant at all three contamination levels (p=0.000, 0.001 and 0.000 respectively) but there were no practical differences for any diluent.

For raw ground beef, incubation time was not significant at any time at the low, medium or high contamination levels. Incubation temperature was significant at all three contamination levels (p=0.000). However, there were no practical differences at any of the three contamination levels. Diluents were also significant at all three contamination levels (p=0.000 at all three levels). There were practical differences for Letheen broth at all three contamination levels (recovering more organisms) and for sterile water (recovering fewer organisms) at the medium contamination level. Letheen broth has a high nutritive content compare to the other diluents tested. In addition, the medium also contains lecithin and Tween 80 which assist in breaking clumps and chains of bacteria resulting in higher recovery. These factors may contribute to the superior recovery by Letheen broth.

For either of the matrices and any of the robustness parameters evaluated, if the parameter under investigation was either not statistically significantly different, or the magnitude if the statistical difference was less than the limit for practical difference ($\leq 0.2 \log s$), the method is considered robust with respect to the parameter.

The 3M[™] Petrifilm[™] Rapid Aerobic Count Plate Method is considered a robust method with respect to the influences of incubation time, incubation temperature and various diluents tested.

3M Food Safety 3M Center Building 275-5W-05 St. Paul, MN 55144-1000 USA 1-800-328-6553 www.3M.com/foodsafety

Please recycle. Printed in the U.S.A. © 3M 2015. All rights reserved. 70-2011-5076-3

3M and Petrifilm are trademarks of 3M. Used under license in Canada. AOAC is a registered trademark of the Association of Analytical Communities International. Performance Tested Method is a servicemark of the AOAC Research Institute.